Globe Valve - HPA-B
Body,The main pressure containing structure of the valve and the most easily identified as it forms the mass of the valve. It contains all of the valve's internal parts that will come in contact with the substance being controlled by the valve. The bonnet is connected to the body and provides the containment of the fluid, gas, or slurry that is being controlled.
Globe valves are typically two-port valves, although three port valves are also produced. Ports are openings in the body for fluid flowing in or out. The two ports may be oriented straight across from each other on the body, or oriented at an angle such as a 90° angle Globe valves with ports at such an angle are called angle globe valves. A globe valve can also have a body in the shape of a y.
Bonnet,Provides leakproof closure for the valve body. The threaded section of stem goes through a hole with matching threads in the bonnet. Globe valves may have a screw-in, union, or bolted bonnet. Screw-in bonnet is the simplest bonnet, offering a durable, pressure-tight seal. Union bonnet is suitable for applications requiring frequent inspection or cleaning. It also gives the body added strength. A bonnet attached with bolts is used for larger or higher pressure applications. Bonnets also contain the packing, which is a wearable material that maintains the seal between the bonnet and the stem during valve cycling operations
Plug or disc (disk),The closure member of the valve. Plugs are connected to the stem which is slid or screwed up or down to throttle the flow. Plugs are typically of the balance or unbalanced type. Unbalanced plugs are solid and are used with smaller valves or with low pressure drops across the valve. The advantages are simpler design, with one possible leak path at the seat and usually lower cost. The disadvantages are the limited size; with a large unbalanced plug the forces needed to seat and hold the flow off become impractical. Balanced plugs have holes through the plug. Advantages include easier shut off as the plug does not have to overcome static forces. However, a second leak path is created between the plug and the cage, cost is generally higher.
Stem,The stem serves as a connector from the actuator to the inside of the valve and transmits this actuation force. Stems are either smooth for actuator controlled valves or threaded for manual valves. The smooth stems are surrounded by packing material to prevent leaking material from the valve. This packing is a wear material and will have to be replaced during maintenance. With a smooth stem the ends are threaded to allow connection to the plug and the actuator. The stem must not only withstand a large amount of compression force during valve closure, but also have high tensile strength during valve opening. In addition, the stem must be very straight, or have low runout, in order to ensure good valve closure. This minimum runout also minimizes wear of the packing contained in the bonnet, which provides the seal against leakage. The stem may be provided with a shroud over the packing nut to prevent foreign bodies entering the packing material, which would accelerate wear.
Cage,The cage is part of the valve that surrounds the plug and is located inside the body of the valve. Typically, the cage is one of the greatest determiners of flow within the valve. As the plug is moved more of the openings in the cage are exposed and flow is increased and vise versa. The design and layout of the openings can have a large effect on flow of material (the flow characteristics of different materials at temperatures, pressures that are in a range). Cages are also used to guide the plug to the seat of the valve for a good shutoff, substituting the guiding from the bonnet.
Seat ring,The seat ring provides a stable, uniform and replaceable shut off surface. Seat rings are usually held in place by pressure from the fastening of the bonnet to the top of the body. This pushes the cage down on the lip of the seat ring and holds it firmly to the body of the valve. Seat rings may also be threaded and screwed into a thread cut in the same area of the body. However this method makes removal of the seat ring during maintenance difficult if not impossible. Seat rings are also typically beveled at the seating surface to allow for some guiding during the final stages of closing the valve.Economical globe valves or stop valves with a similar mechanism used in plumbing often have a rubber washer at the bottom of the disc for the seating surface, so that rubber can be compressed against the seat to form a leak-tight seal when shut.Many globe valves have a class rating that corresponds to the pressure specifications of ANSI 16.34. Bibcocks and sillcocks are variations of globe or stop valves used in plumbing. Needle valves are variations of globe valves where instead of a separate attached disc piece, the internal end of the stem is conically tapered to act as the disc to fit into a matching seat for fine flow adjustment. Other different types of valve usually are called globe style valves because of the shape of the body or the way of closure of the disk. As an example typical swing check valves could be called globe type.